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Abstract 

Base editing enables the high-throughput screening of genetic variants for phenotypic effects. Base editing screens require the design of single 
guide RNA (sgRNA) libraries to enable either gene- or variant-centric approaches. While computational tools supporting the design of sgRNAs 
exist, no solution offers versatile and scalable library design enabling all major use cases. Here, we introduce BEscreen, a comprehensive base 
editing guide design tool provided as a web server ( bescreen.ostendorflab.org ) and as a command line tool. BEscreen provides variant-, gene-, 
and region-centric modes to accommodate various screening approaches. The variant mode accepts genomic coordinates, amino acid changes, 
or rsIDs as input. The gene mode designs near-saturation libraries co v ering the entire coding sequence of given genes or transcripts, and the 
region mode designs all possible guides for given genomic regions. BEscreen enables selection of guides by biological consequence, it features 
comprehensive customization of base editor characteristics, and it offers optional annotation using Ensembl’s Variant Effect Predictor. In sum, 
BEscreen is a highly versatile tool to design base editing screens for a wide range of use cases with seamless scalability from individual variants 
to large, near-saturation libraries. 
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Introduction 

Genetic variation is a central driver of phenotypic diversity,
contributing to both physiological variability and suscepti-
bility to a wide range of diseases [ 1 ]. The advent of next-
generation sequencing has allowed for determining the associ-
ation between many genetic variants with specific phenotypes
in large human cohorts [ 2 ]. However, the assessment of which
variants causally drive a given phenotype has remained a cen-
tral challenge in the field [ 3 ]. 
Received: March 19, 2025. Revised: April 28, 2025. Editorial Decision: April 29,
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Base editors (BEs) catalyze the conversion of nucleotides; 
cytosine base editors (CBEs) convert a C •G to a T •A base 
pair, while adenine base editors (ABEs) convert an A •T to a 
G •C base pair. ABEs and CBEs consist of a deaminase cou- 
pled to a catalytically impaired version of Cas9. This com- 
bination enables the use of single guide RNAs (sgRNAs) to 

direct the deaminase to specific sites in the genome, thus en- 
abling the modification of specific genomic loci [ 4–6 ]. More 
recently, BEs have been explored that catalyze additional 
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ucleotide modifications [ 7 , 8 ]. By transducing a pool of base
ditor-expressing cells with a library of sgRNAs to introduce
ultiple variants in parallel, base editing can be leveraged for

he high-throughput assessment of variants for causal effects
t scale [ 9 , 10 ]. Recent studies have demonstrated the poten-
ial of such BE screens, leading to the identification of sin-
le nucleotide polymorphisms (SNPs) that modulate diverse
henotypes, including T cell function [ 11 , 12 ], drug responses
 13 ], and signaling [ 14 , 15 ]. 

BE screens require computational tools to facilitate the de-
ign of sgRNA libraries. While several tools that aid in the
esign of BE sgRNAs exist [ 16–21 ], no tool provides broad
nd flexible functionality to address all major use cases for BE
creens. These use cases range from interrogating specific, pre-
efined variants to assessing all possible edits in given genes,
ranscripts, or otherwise defined genomic regions. In addition,
ver the last few years, a range of different BEs have been pi-
neered that exhibit distinct characteristics, including differ-
nt editing windows, different requirements for the presence
f protospacer adjacent motifs (PAMs), and others, requiring
exible options in an sgRNA design tool [ 5 , 6 , 22–25 ]. 
Here, we introduce BEscreen, a versatile toolkit that en-

bles the design of BE sgRNA libraries for a broad range
f use cases ( Supplementary Fig. S1 ). BEscreen accepts differ-
nt inputs, including genomic coordinates, protein mutations,
enes, transcripts, and genomic regions. It thus aids in the de-
ign and functional annotation of sgRNAs for both variant-
nd gene-centric applications. Its capacity to filter sgRNAs for
iven biological consequences makes it uniquely suitable to
esign screening libraries with defined positive and negative
ontrols. BEscreen also provides unprecedented flexibility in
erms of defining PAM requirements and other base editor
haracteristics. 

aterials and methods 

Escreen offers three modes focused on variants, 
enes, and genomic regions 

Escreen offers three different modes to design base editing
uides for pre-defined variants, for coding sequences (CDS) of
pecific genes and transcripts, and for given genomic regions.
nput can be provided manually or as a CSV file. An overview
f the workflow using BEscreen is outlined in Fig. 1 . 

ariant-centric mode 
Escreen’s variant mode identifies any possible sgRNA that
ediates editing of a pre-defined nucleotide or amino acid

ariant. Nucleotide variants are accepted as a concatenated
tring composed of the genomic coordinates and reference
nd alternative bases. For example, “12_6537866_C_T” indi-
ates a variant with a thymidine instead of a cytosine on chro-
osome 12 at position 6537866. Alternatively, nucleotide

ariants can be provided using their rsID from dbSNP (e.g.
rs1062436”). 
Amino acid mutations can be provided as gene or tran-

cript name concatenated with an amino acid substitution
e.g. “GAPDH-L270F” for a leucine to phenylalanine substi-
ution at position 207 in the default GAPDH transcript or
GAPDH-201-L270F” for the same variant in transcript 201
f GAPDH ). BEscreen assesses whether the desired mutation
an be introduced by editing a single base in one of the three
bases making up the codon. If so, it will convert this edit to
genomic coordinates and design guides accordingly. 

Gene-centric mode 
BEscreen’s gene mode identifies any possible sgRNA in the
CDS of given genes or transcripts to generate near-saturation
BE libraries. The gene mode accepts HUGO Gene Nomen-
clature Committee (HGNC) gene names (e.g. “GAPDH”)
as input with the option to specify a given transcript (e.g.
“GAPDH-201” for GAPDH transcript 201). It then ex-
tracts the nucleotide sequence of all CDS regions in the spec-
ified gene(s) or transcript(s) and slides through this sequence
searching for combinations of PAM sites and editable bases
on both strands to identify and annotate guide sequences. 

Region-centric mode 
BEscreen’s region mode accepts a genomic region as input (e.g.
“12:6536490–6537490” for region 6536490–6537490 on
chromosome 12). BEscreen extracts the nucleotide sequence
of indicated regions and slides through the sequence search-
ing for combinations of PAM sites and editable bases on both
strands to identify all possible sgRNAs. 

BEscreen is highly customizable 

BEscreen offers extensive customization options for all three
modes. Notably, BEscreen enables full customization of PAM
site requirements and base editor characteristics, including ad-
justing the length of the desired guides and the position of the
editing window. BEs are expected to exhibit high editing ef-
ficiency in their individually determined editing window, but
edits may occur outside of this window, albeit at lower effi-
ciency [ 20 ]. To account for this, users can define a safety region
to annotate guides with possible off-target edits in regions of
minor editing efficiency adjacent to the main editing window.
For convenience, all parameters can be set using base editor
presets [ 18 , 20 , 21 , 23 , 26 ]. 

In addition to customization options for input and base ed-
itor characteristics, BEscreen enables tailoring of the output.
Importantly, as a part of this, BEscreen provides functional-
ity to identify guides with given biological consequences. This
feature enables convenient identification of screen controls,
such as synonymously editing guides as negative controls and
splice site disrupting or nonsense variant-mediating guides as
positive controls. 

BEscreen web server implementation 

The BEscreen web server ( bescreen.ostendorflab.org ) is a
Shiny for Python-based web app (v1.2.1; Python v3.12.3). The
main third-party modules used are Polars (v1.16.0; github.
com/ pola-rs/ polars ) for data processing, pyfaidx (v0.8.1.3;
github.com/ mdshw5/ pyfaidx ) to extract genomic sequences
from a FASTA reference genome, and PyRanges (v0.1.2; [ 27 ])
to parse a GTF annotation file. Optional annotation is based
on Ensembl’s Variant Effect Predictor (VEP; v113.3; [ 28 ])
and NCBI’s BLAST (v2.16.0; [ 29 ]). igv.js (v3.1.3; [ 30 ]) is
used with BAM files created by pysam (v0.22.1; github.com/
pysam-developers/pysam ) to display the alignment of sgRNAs
to the reference genome. BEscreen provides the Ensembl refer-
ence genomes for human (GRCh38, Release 112) and mouse
(GRCm39, Release 112) and is running on Ubuntu (24.04.1
LTS) and Apache2 (version 2.4.58). A command-line version
is available at github.com/ ostendorflab/ bescreen . 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf406#supplementary-data
https://bescreen.ostendorflab.org
https://github.com/pola-rs/polars
https://github.com/mdshw5/pyfaidx
https://github.com/pysam-developers/pysam
https://github.com/ostendorflab/bescreen
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Figure 1. Use cases of BEscreen. Flo w chart illustrating the use cases enabled by BEscreen’s three modes (variant-, gene-, and region-based). BEscreen 
can be used to identify sgRNAs for specific variants (nucleotide- or amino acid-defined) as well as for genes and genomic regions. ABE, adenine base 
editor; CBE, cytosine base editor; HGNC, HUGO Gene Nomenclature Committee; PAM, protospacer adjacent motif; SNP, single nucleotide 
polymorphism; VEP, Variant Effect Predictor. 
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Results 

BEscreen provides rich output 

BEscreen’s main output is a table providing detailed informa-
tion of the identified guides, including the introduced vari-
ant(s), base change, guide sequence with and without PAM
site, sequence of the editing window (and, if set, for the safety
region), the genomic location, and the strand of guide align-
ment. In addition, the table details how many edits take place
within the editing window, and the distance of these edits to
the center of the editing window, where editing is most ef-
ficient. For the variant and gene modes, BEscreen annotates
identified guides with the affected gene, transcript, and exon.
In addition, BEscreen reports affected codons and their trans-
lation product pre- and post-editing with their positions. In
the gene and region modes, output includes an additional ta-
ble listing non-editing guides (sgRNAs predicted to introduce
no edits). 

Optionally, the output of BEscreen can be annotated using
Ensembl’s VEP [ 28 ]. To identify additional binding sites of
given guides, BEscreen can identify matches of the guide se-
quence in the reference genome using NCBI’s BLAST [ 29 ]. In
addition to the tabular output, the BEscreen web server dis-
plays genomic alignment of the identified sgRNAs in an em-
bedded version of the Integrative Genome Viewer (igv.js) [ 30 ].

Case study 

To illustrate BEscreen’s functionality in practice, we designed
sgRNAs for variants in the APOE gene using the most com-
monly used ABE and CBE BEs. APOE variants are the largest
monogenetic risk modifiers of Alzheimer’s disease and have
more recently been implicated in modulating additional phe- 
notypes ranging from cardiovascular disease to tumor and in- 
fection immunity [ 31–35 ]. 

Three highly prevalent variants of APOE exist, termed 

APOE2 , APOE3 , and APOE4 , which are defined by two 

SNPs. The first SNP (rs429358) is a T to C substitution on 

chromosome 19 at position 44908684 leading to a change 
of a TGC codon to CGC, resulting in a cysteine to argi- 
nine substitution (APOE 

C130R ). The second SNP (rs7412) cor- 
responds to a C to T substitution at position 44908822 

(APOE 

R176C ). The most common APOE3 variant is defined 

by the rs429358(T) / rs7412(C) genotype, while the APOE4 

and APOE2 variants correspond to rs429358(C) / rs7412(C) 
and rs429358(T) / rs7412(T) genotypes, respectively. We used 

BEscreen’s variant mode to identify guides that mediate the in- 
troduction of these mutations in the reference APOE3 back- 
ground (Fig. 2 A). BEscreen identified one guide suitable for 
the rs429358 edit. Notably, inspection of the guide’s charac- 
teristics in the tabular output revealed that this guide intro- 
duces a second edit changing the upstream GTG codon to 

GCG, resulting in an additional missense mutation. For the 
rs7412 SNP, BEscreen identified two suitable guides mediat- 
ing the desired APOE 

R176C mutation. By entering variants at 
the protein instead of nucleotide level (i.e. APOE-C130R in- 
stead of rs429358), BEscreen searches for whether additional 
edits in any of the other two bases making up the affected 

codon achieve the intended protein consequences, which here 
was not the case. 

The implications of other, less common APOE variants re- 
main largely unexplored, rendering their systematic interroga- 
tion intriguing [ 36 ]. To design an sgRNA library introducing 
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Figure 2. Case study: design of individual guides and sgRNA libraries for variants in the APOE gene. ( A ) Overview of the output of BEscreen used in 
variant mode to identify guides introducing the clinically significant rs429358 and rs7412 variants in the APOE gene. ( B ) Genomic alignment of a subset 
of the guides identified by BEscreen’s gene mode to identify all possible editing and non-editing guides in the APOE coding sequence. ( C ) Number of 
editing guides identified for ABE (adenine base editor) and CBE (cytosine base editor) as shown in panel (B), indicating whether guides are predicted to 
be specific (mediate only one edit) or not. ( D ) Ov ervie w of the consequences mediated by editing guides shown in panel (B). 
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ll possible edits into APOE , we next leveraged BEscreen’s
ene mode (Fig. 2 B). Using “APOE” as input, BEscreen de-
igned 1065 editing guides, 506 of which mediated only one
dit and were thus annotated as specific (Fig. 2 C). As detailed
n BEscreen’s output, the consequences mediated by all ed-
ts included 526 missense, 313 synonymous, 11 splice site,
8 nonsense, 2 start lost, and 2 stop lost edits (Fig. 2 D). In
ddition, 402 binding but non-editing guides were identified.
hese non-editing guides and guides conferring synonymous
dits are valuable as negative controls in a BE screen, while
uides mediating splice site disruptions or nonsense muta-
ions may serve as positive controls. Thus, BEscreen designed
 complete library for evaluating known and unknown vari-
nts in the APOE gene with minimal and convenient input
equirements. 

Finally, we used the genomic region spanning the APOE
ene as input for BEscreen’s region mode (“19:44905791–
4909393”), resulting in 3150 and 1247 editing and non-
diting guides, respectively . Notably , these guides cover the en-
ire gene region, including introns and 5 

′ and 3 

′ untranslated
egions (UTRs) in contrast to the output of the gene mode. 

iscussion 

RISPR-Cas9-coupled base editing has enabled the rapid
doption of functional screens to interrogate the causal im-
act of genetic variants at scale [ 9 , 10 ]. BEscreen is a versatile
oolkit to design sgRNAs from small-scale experiments focus-
ng on pre-specified single nucleotide and amino acid variants
o large-scale near-saturation screens of genes and transcripts
r genomic regions. BEscreen is uniquely suited to design posi-
ive and negative controls by allowing for sgRNA selection by
iological consequence, including synonymous or non-editing
for negative controls) and nonsense or splice site mutations
for positive controls). BEscreen features three modes that en-
ble BE screens focused on variants, genes, or genomic re-
ions. Future iterations of BEscreen may include more refined
uality control metrics as biological characteristics of specific
Es become better characterized and will support additional
nucleotide changes as novel nucleotide editing enzymes are
discovered or engineered. In sum, BEscreen provides a com-
prehensive tool for the design of sgRNA libraries for base edit-
ing screens. 
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