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Clinical outcomes of severe acute respiratory syndrome 2 (SARS-CoV-2) infection are
highly heterogeneous, ranging from asymptomatic infection to lethal coronavirus
disease 2019 (COVID-19). The factors underlying this heterogeneity remain

insufficiently understood. Genetic association studies have suggested that genetic
variants contribute to the heterogeneity of COVID-19 outcomes, but the underlying
potential causal mechanisms are insufficiently understood. Here we show that
common variants of the apolipoprotein E (APOE) gene, homozygous in approximately
3% of the world’s population' and associated with Alzheimer’s disease, atherosclerosis
and anti-tumour immunity®?, affect COVID-19 outcome in a mouse model that
recapitulatesincreased susceptibility conferred by male sex and advanced age. Mice
bearing the APOE2 or APOE4 variant exhibited rapid disease progression and poor
survival outcomes relative to mice bearing the most prevalent APOE3 allele. APOE2
and APOE4 mice exhibited increased viral loads as well as suppressed adaptive
immune responses early after infection. In vitro assays demonstrated increased
infectionin the presence of APOE2 and APOE4 relative to APOE3, indicating that
differential outcomes are mediated by differential effects of APOE variants on both
viralinfection and antiviralimmunity. Consistent with these in vivo findings in mice,
our results also show that APOE genotype is associated with survival in patients
infected with SARS-CoV-2 in the UK Biobank (candidate variant analysis, P=2.6 x 107).
Our findings suggest APOE genotype to partially explain the heterogeneity of
COVID-19 outcomes and warrant prospective studies to assess APOE genotyping as a
means of identifying patients at high risk for adverse outcomes.

SARS-CoV-2 has caused the COVID-19 pandemic with more than 580 mil-
lion confirmed infections and 6 million deaths so far worldwide. Clinical
presentations of SARS-CoV-2 infection show pronounced variation,
ranging from asymptomatic infection to lethal disease. Several epi-
demiological factors have beenidentified that associate withadverse
outcome, including male sex, advanced age, select comorbidities and
geneticancestry®. However, these factors only partially explain the wide
interindividual clinical spectrum of SARS-CoV-2 infection. Thereis thus
amajor need to identify the factors underlying susceptibility to poor
outcome in COVID-19. Major efforts have shown germline genetics to
correlate with disease severity in COVID-19 (reviewed inref.”). Among
these, candidate gene approaches have revealed rare autosomal inborn
errors of typelinterferon (IFN) immunity to alter type I IFN signalling
in vitro®. In addition, genome-wide association studies have identi-
fied several genomic loci to be significantly associated with critical
COVID-19 (refs. %), However, it remains unknown whether common
germline variants causally affect the course of COVID-19.

APOEis asecreted protein with canonical rolesin lipid metabolism.
Importantly, APOE has also been shown to modulate immunity in dif-
ferent contexts, including infection and anti-tumour immunity>'*Y,
Two single nucleotide polymorphisms give rise to three highly prev-
alent variants of APOE, termed APOE2, APOE3 and APOE4. The pro-
teins encoded by these alleles differ by one or two amino acids. Forty
per cent of the world’s population carry at least one copy of either
the APOE2 or APOE4 allele, and approximately 3% are homozygous
for either APOE2 or APOE4 (ref.'). The APOE4 variant is the strongest
monogenetic risk factor for Alzheimer’s disease'®". APOE variants also
modulate severalimmune-related processes, including atherosclero-
sis*and anti-tumour immunity?, prompting us to determine whether
APOE causally modulates SARS-CoV-2 infection. Using genetic mouse
models of APOE human genetic variation as well as supportive clini-
cal association studies, we found that the APOE2 and APOE4 variants
confer adverse outcomes in SARS-CoV-2 infection in vivo including
reduced survival.
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Fig.1|APOE variants modulate outcome of mouse SARS-CoV-2MA10
infection. a, Multivariate analysis of theimpact of age, sexand APOE genotype
onsurvival of SARS-CoV-2 MA10-infected APOE-knock-in mice (Pvalues according
to multivariable Cox proportional hazards model; n=128,82 and 118 for APOE2,
APOE3and APOE4, respectively; data pooled from13independent experiments).
n,samplesize; HR, hazard ratio for death. b-d, Survival of combined male and
female SARS-CoV-2 MA10-infected APOE-knock-in mice stratified by age (cutoff:
30weeks) (b), sex (c) and APOE genotype (d) (Pvalues accordingtolog-rank
tests). p.i., postinfection. e-n, Age distribution (e,j), weight course (f k), weight
onday 4 postinfection (g,l), survival (h,m) and hazard ratios (i,n) of male

APOE causally affects mouse COVID-19 outcomes

To assess the impact of APOE germline variation on SARS-CoV-2
infection, we infected 328 APOE-knock-in mice across different ages
and of both sexes with SARS-CoV-2 MA10, a mouse-adapted strain
of SARS-CoV-2 (ref. 2°) (Extended Data Fig. 1a—c). In APOE-knock-in
mice, the mouse Apoe gene is replaced with one of the three human
APOE alleles. Multivariate analysis revealed that this mouse model
recapitulated the increased risk for poor survival conferred by male sex
and those of advanced age as previously shown in humans (Fig. 1a-c).
Remarkably, APOE genotype also significantly affected survival, with
both the APOE2 and APOE4 variants conferring poor survival out-
comesrelative tothe APOE3 variant (Fig.1a,d). In both male and female
age-matched mice, APOE4 mice exhibited accelerated weight loss
relative to the other variants (Fig. le-g,j-1and Extended Data Fig. 1d).
Although female mice showed a higher level of survival overall, APOE2
and APOE4 conferred worse survival outcomes in both male and female
mice (Fig. 1h,i,m,n). The impact was particularly pronounced in male
mice, with100% of APOE4 mice succumbing to COVID-19 in contrast to
approximately 30% mortality in APOE3 mice. We observed asignificant

(e—i) versus female (j-n) APOE-knock-in mice from astratified by APOE genotype
(Pvaluesaccordingto Kruskal-Wallis test (e,j), two-sided t-tests (g,1), log-rank
test (h,m) and Cox proportionalhazard models (i,n); note that fand k show
group averages, but some animals died or were censored for tissue collection
duringthe course of the experiment). dO, day 0. Theerrorbarsina,i,nindicate
95% confidenceintervals. Theerrorbarsine,fj kindicate the standard error of
the mean. Theboxplot whiskersin g,lextend to the smallestand largest value
withinl.5timesthe interquartile ranges of the hinges, and thebox centre and
hingesindicate the medianand firstand third quartiles, respectively.

interaction between APOE genotype and age, with the impact of APOE
on survival being more pronounced in younger mice. No significant
interaction was observed for APOE genotype and sex (Extended Data
Fig.1e-h). Of note, no spontaneous deaths were detected in similarly
aged and non-infected APOE-knock-in mice over acomparable period,
indicating that the knownimpact of APOE genotype on longevity does
not confound these results (Extended Data Fig. 1i-k). Thus, APOE vari-
ants causally and markedly affect the outcome of mouse COVID-19.

APOE2 and APOE4 mice exhibit accelerated COVID-19

To assess viralload, we carried out TagMan quantitative real-time PCR
onlungs from APOE-knock-in mice on day 4 post infection. Consistent
with faster disease progression, elevated viral loads were present in
APOE2 and APOE4 relative to APOE3 mice (Fig. 2a). These differences
were already evident on day 2 post infection (Extended DataFig.2a) and
validated by SARS-CoV-2 nucleocapsid immunofluorescence staining
(Fig. 2b). Histopathological analyses on day 4 post infection revealed
pronounced lung injury in APOE4 mice with increased bronchiolar
necrosis, alveolar damage and fibrin deposition (Fig. 2c-fand Extended
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Fig.2|APOE2and APOE4 mice exhibit accelerated progression of COVID-19
relative to APOE3 mice. a, TagMan quantitative PCR for SARS-CoV-2N1in
homogenized lungs from APOE-knock-in mice on day 4 post infection with
SARS-CoV-2MAI10 (data pooled from two experiments; Pvalues according to
two-sided Mann-Whitney test; n=15,20 and 18 for APOE2, APOE3 and APOE4,
respectively). b, Left: quantification ofimmunofluorescence staining for
SARS-CoV-2 nucleocapsidin lungs of APOE-knock-in mice on day 4 after
infection with SARS-CoV-2 MA10 (Pvalues according to two-sided Mann-
Whitney tests; n=10,15and 10 for APOE2, APOE3 and APOE4, respectively).
Right:images showing representative sections (with SARS-CoV-2 N1stained
red, and nucleistained with 4’,6-diamidino-2-phenylindole (DAPI; blue)); scale
bar,100 pm. c-e, Histopathologic scoring of bronchiolar necrosis (c), alveolar

Data Fig. 2b,c). No differences were observed for inflammatory infil-
trates in the pulmonary interstitium and vessels in APOE2 or APOE4
micein comparison with APOE3 mice (Extended DataFig.2d-h). These
resultsindicate accelerated COVID-19 progressionin APOE2 and APOE4
mice relative to APOE3, with histopathologic features evident by day
4 primarily in APOE4 mice.

APOE impacts antiviralimmunity and viral infection

We next carried out transcriptional profiling of homogenized lungs of
non-infected APOE-knock-in mice and those of APOE-knock-in mice on
days 2 and 4 post infection with SARS-CoV-2 MA1O (Fig. 3a). To iden-
tify clusters of highly correlated genes and relate their expression to
genotype and time point relative to infection, we used weighted gene
coexpression network analysis® (Methods). This analysis revealed five
modules of coexpressed genes that were significantly correlated with
APOE genotype, and ten modules correlated with time pointrelative to
infection (Fig. 3b). Assessment of the trajectories of the eigengene of
these modules (a metric summarizing the weighted overall expression
ofamodule) revealed modules that became specifically upregulated or
downregulatedin APOE3relative to APOE2 and APOE4 mice during dis-
ease progression. This was most pronounced for modules greenyellow
and midnightblue (upregulated in APOE3relative to APOE2and APOE4)
andblack (downregulated in APOE3relative to APOE2 and APOE4; Fig.3c
and Extended DataFig. 3a), and these results were validated in aninde-
pendent cohort of mice (Extended Data Fig. 3b,c). Correlations of the
greenyellow, midnightblue and pink modules with APOE genotype
were also significant in an independent third cohort of young female
mice (Extended Data Fig. 3d,e). Pathway analysis of the black module
that exhibited a higher level of expression in APOE2 and APOE4 rela-
tive to APOE3 mice on day 4 revealed enrichment of genes implicated
in blood coagulation and haemostasis, abnormalities of which are
frequentin severe COVID-19 (ref.?) (Extended Data Fig. 3f,g). Notably,
analysis of the modules that exhibited downregulationin APOE2 and
APOE4 mice relative to APOE3 on day 4 (greenyellow, midnightblue
and yellow) showed enrichment of genes implicated in T and B cell
activation as well as positive immune response regulation (Extended
DataFig.3h-o0).Immunofluorescence staining indicated overall similar
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damage (d) and fibrin deposition (e) in lungs from APOE-knock-in mice on day 4
postinfection with SARS-CoV-2 MA10 (data pooled from two independent
experiments; n=18,22and 15 for APOE2, APOE3 and APOE4, respectively;
Pvalues according to two-sided Mann-Whitney tests). f, Representativeimages
for c-e.Black arrowheads, bronchiolar epithelial necrosis; asterisks, fibrin;
white arrowheads, interstitial and perivascularinflammation; arrows,
endothelialitis. Scale bars, 1,000 um (top row) and 400 um (middle and bottom
rows). Insets magnify pathological findings as labelled. Boxplot whiskers in
aandbextend to the smallestand largest value within1.5times the interquartile
ranges of the hinges, and box centre and hinges indicate median and firstand
third quartiles, respectively.

levels of CD45" leukocytes in APOE2 and APOE4 relative to APOE3 mice
(Extended Data Fig. 3p). These data are consistent with dampened
adaptive immunity during early response to COVID-19 in APOE2 and
APOEF4 relative to APOE3 mice.

Consistent with these findings, the results of flow cytometry on disso-
ciated lungs on day 4 postinfection confirmed an expansion of myeloid
cellsandrelative depletion of lymphoid cellsin the lungs of both APOE2
and APOF4relative to APOE3 mice (Fig. 3d and Extended DataFig.4a,b).
In humans with severe COVID-19, depletion of lymphoid subsets has
alsobeen observed in the peripheral blood**. To assess whether these
changes were recapitulated by our animal model, we carried out flow
cytometry on peripheral blood of APOE-knock-in mice. Although total
leukocyte numbers were not significantly different between APOE
genotypes, both APOE2 and APOE4 mice showed expansion of myeloid
cellsmainly driven by Ly6G* neutrophils with concomitant contraction
of all major lymphoid populations (Extended Data Fig. 4c-g). These
data are consistent with the reported elevation of myeloid/lymphoid
ratios in patients with adverse COVID-19 outcomes®?* and suggest
thatadaptiveimmune responses are blunted in APOE2 and APOE4 mice
during early COVID-19 progression.

To further profile the immunological response in APOE-knock-in
mice during COVID-19, we carried out single-cell RNA sequencing on
atotal of 41,500 cells (post-filtering) from 29 mice across all 3 geno-
types with and without COVID-19 (Extended Data Fig. 5a-d). Infected
mice showed a marked expansion of myeloid cells, which, consistent
with our flow cytometry data, was more prominent in APOE2 and
APOE4 relative to APOE3 mice (Fig. 3e,f and Extended Data Fig. 6).
To assess changes in the functional status of cell clusters, we per-
formed gene set enrichment analysis. Notably, APOE2 mice showed
more pronounced enrichment of variousimmune-related pathways
relative to APOE3 in comparison to APOE4 relative to APOE3 mice
(Fig.3g).In humans, hyperactivation of proinflammatory signalling
hasbeenimplicated in adverse outcomes®?, We therefore reasoned
that despite a similar change inimmune subset abundances during
early infection, antiviralimmune responses might diverge between
APOE2 and APOE4 mice over the course of infection. To test this, we
assessed the generation of virus spike-specific CD8" T cells during
infection (Fig. 3h). The fraction of virus spike-specific CD8" T cells as
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oflungs from SARS-CoV-2 MA10-infected mice. RNA-seq, RNA sequencing.

b, Correlation of module eigengenes with time after infection and APOE
genotype ordered by itsimpacton COVID-19 survival (APOE3 > APOE2 > APOE4);
asterisksindicate significant correlations (Pearson correlation tests).c, Module
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day2; APOE3, day 4; APOE4, day 4) and 7 (APOE2, day 4)). d, Flow cytometry for
indicated cellsinlungs of APOE-knock-in mice on day 4 postinfection (n=21,15
and 20 for APOE2, APOE3 and APOE4, respectively; data pooled from two
independent experiments; Pvalues according to one-tailed t-tests). e,f, Density
plots of 41,500 RNA-sequenced lung cells from APOE-knock-in mice stratified
byinfectionstatus (e) or APOE genotypeininfected mice (f). M$, macrophage;
UMAP, uniform manifold approximation and projection. g, Gene set enrichment

assessed by tetramer staining was significantly larger in APOE4 rela-
tive to APOE3 and APOE2 mice, consistent with APOE4 mice eventually
mounting more effective adaptive antiviral immunity than APOE2
mice (Fig. 3i,j). These data indicate that although both APOE2 and
APOE4 miceinitially exhibited blunted adaptive immune responses,
APOE4mice generated morerobust antiviral T cell responsesinlater
stages of infection, which emerged after pathological tissue damage
had occurred.
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i, Proportion of tetramer-positive CD8" T cells on day 11 post infection (n =14,
22and17 for APOE2, APOE3 and APOE4, respectively; data pooled from two
independent experiments, Pvalues according to two-tailed t-tests; note that
some mice died during the course of infection).j, Representative samples for .
k, Fraction of infected cells after incubation with SARS-CoV-2in the presence of
theindicated proteins (n=10 per group; representative of three independent
experiments; Pvalues according to two-tailed ¢-tests). Boxplot whiskersin
c,d,i,kextendtothesmallestandlargest value within1.5times the interquartile
ranges of the hinges, and box centre and hinges indicate median and firstand
third quartiles, respectively.

We next assessed whether APOE directly affects viral infection,
potentially explaining the emergence of differences in viral titre and
immune responses early following infection. Remarkably, recombi-
nant APOE3, but not recombinant APOE2 or APOE4, significantly sup-
pressed infection of Huh-7.5 cells in vitro (Fig. 3k). In sum, these data
indicate that adverse outcomes in APOE2 and APOE4 mice are driven
by both enhanced viral infection and dampened adaptive antiviral
immunity.
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Fig.4|APOE germline variants are associated with survival in humans with
SARS-CoV-2infection. a, Multivariate analysis of theimpact of age, sex and
APOE genotype on survival of patients with SARS-CoV-2infectionin the UK
Biobank (Pvalues according to multivariable Cox proportional hazards model,

APOE genotype and survival in patients with COVID-19

Toassess theimpact of APOE genotype on COVID-19 outcome inhumans,
we analysed participants of the UK Biobank?. The overall distribution
of APOE genotypein402,763 UK Biobank participants was comparable
tothat of similarly agedindividualsinthe Atherosclerosis Risk in Com-
munities study”, withapproximately 40% carrying at least one copy of
the APOE2 or APOE4 allele (Extended Data Fig. 7a,b). Consistent with
previousreports carried outat earlier times during the pandemic®%, our
observations show amoderate enrichment of APOE4homozygosity in
participants with positive versus negative test results and in participants
with positive test results versus the remaining participants (Extended
Data Fig. 7c,d). There was no significant difference in APOE genotype
distribution between patients with a positive test regarding the test
origin (inpatient versus outpatient; Extended Data Fig. 7e).

We next carried out survival analysis of patients with confirmed
SARS-CoV-2infection. Consistent with known epidemiological obser-
vations, multivariate analysis confirmed male sex and advanced age
to confer adverse survival outcomes (Fig. 4a-c). Notably, patients
homozygous for APOE4 also exhibited poor survival withamore than
twofoldincreased hazardratio for death relative to APOE3homozygous
patients (Fig. 4a,d). Patients homozygous for APOE2 also experienced
anincreased hazard ratio for death that did not reach statistical sig-
nificance (Fig. 4a,d). The association between APOE genotype and
survival remained significant on adjustment for the first ten principal
components of genetic variation, indicating population structure to
be unlikely to account for this association (Extended Data Fig. 8a—c).
Consistently, the association of APOE with COVID-19 was maintained on
restriction of the analysis toindividuals of Europeanancestry (Extended
DataFig.8d-g).Nosignificant association of APOE genotype with sur-
vivalwas detected over asimilar period before the start of the COVID-19
pandemic, indicating that the known association of APOE genotype
with longevity also does not confound these results (Extended Data
Fig. 8h). Overall, these results are consistent with our animal studies
that demonstrate a causal role of APOE genotype in modulating mouse
COVID-19 outcome. While the present work was in revision, an inde-
pendent study validated the epidemiologic association of APOE4 with
adverse outcomes in COVID-19 in the large FinnGen cohort®.

Discussion

The COVID-19 pandemic has had adevastatingimpact on public health,
butindividual outcomes are markedly heterogeneous. Comprehensive
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error barsindicate 95% confidence intervals,n=13,207).b-d, Survival of
patients fromastratified by age below or above median (b), sex (c) and APOE
genotype (d). Pvaluesinb-d accordingtolog-rank tests. n, sample size; HR,
hazardratiofordeath.

efforts have been made to uncover the genetic basis of COVID-19 out-
come. These efforts were carried out using either genome-wide or
candidate gene approaches and identified genetic variants and regions
epidemiologically associated with COVID-19 outcome®10 12141531 How-
ever, whether common germline variants could causally modulate
COVID-19 outcomes in vivo is unknown. In this work, we undertook a
reverse genetic approach and specifically focused on APOE variants
given their previously established roles in modulating immunity.
By using genetic mouse models of human APOE germline variation,
we established a causal link between APOE genotype and COVID-19
outcome in mice, supported by clinical association data in humans.
Notably, our focused genetic and biochemical studies of these APOE
variantsled us to assess their epidemiological associations with human
outcomes. Although previous genome-wide association studies for
COVID-19 criticalillness have not detected associations with variantsin
APOE thatreached genome-wide significant threshold levels, our data
onAPOEvariantassociation with survivalin patients with COVID-19in
acandidate analysis are supported by the reverse genetic approach
in mice, suggesting a potential causal relationship between APOE4
genotype and COVID-19 outcome in human disease.

We uncovered two mechanisms underlying APOE-genotype-
dependent differences in mouse COVID-19 outcomes: both APOE2
and APOE4 mice showed impaired immune responses during early
infection. Single-cell transcriptional profiling indicated hyperactiva-
tion of proinflammatory signalling in APOE2 relative to APOE3 and
APOE4 mice. In addition, APOE4 mice exhibited increased expansion
of virus-specific CD8* T cells during later stages of infection, indicat-
ing that antiviral T cell responses diverge between APOE2 and APOE4
during later infection stages. In addition to these effects on antiviral
immunity, we found that recombinant APOE3, but not recombinant
APOE2 or APOE4, inhibited viral infection in vitro. These findings are
consistentwith a previous study demonstrating increased infection of
APOE4 relative to APOE3 neurons and astrocytes®. Although this past
study’s findings could be interpreted as APOE4 enhancing infection
of neurons and astrocytes relative to APOE3, we interpret our findings
as APOE3 repressing infection in contrast to APOE2 and APOE4. Our
dataindicate that adverse outcomesin APOE2 and APOE4 mice may be
mediated by both enhanced viral infection and maladaptive immunity
during early infection, with APOE4 mice ultimately generating more
robust antiviral T cellimmunity than APOE2 mice.

It will be important to further dissect the mechanistic basis of how
these variants exert detrimental effects on COVID-19 outcome at a
molecular level in future studies. APOE has been shown to directly



modulate both innate and adaptive immune responses>****, providing
potential clues towards its molecular mechanism of actioninimmune
modulation. Inaddition, agenetic screenidentified cholesterol metab-
olism to affect SARS-CoV-2 infection®*, and SARS-CoV-2 may bind
directly to APOE®*, providing starting points for further mechanistic
studies focused on how APOE affects viral infection. It isimportant to
note that the effects of APOE variants seem to be disease-context spe-
cific, withAPOE2and APOE4 conferring beneficial and/or detrimental
outcomes depending on phenotype*#°*-* Moreover, the dual impact
of APOE genetic variation on COVID-19 and Alzheimer’s outcomes has
implications for understanding the neurocognitive changes imparted
by both disorders.

Our findings have several potential clinical implications. First, pro-
spective clinical studies are warranted to determine whether APOE
genotyping could be used for risk stratification in SARS-CoV-2 and
perhaps other virus infections. Such genotyping may allow future
patients to benefit from more aggressive preventative and therapeu-
tic approaches, including early booster vaccinations, antiviral drugs
and monoclonal antibody therapies. Theimpact of vaccination or prior
infection history on APOE genotype dependence of COVID-19 outcomes
will need to be determined. Additionally, it will be important to assess
vaccination efficacy in individuals of distinct APOE genotypes. More
generally, our work confirms that common genetic variation can give
rise to heterogeneous outcomes of COVID-19.
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Methods

Celllines

VeroE®6 cells (Chlorocebus sabaeus; sex: female, kidney epithelial)
obtained from the ATCC (CRL-1586) and Ralph Baric (University of North
Carolina at Chapel Hill), Caco-2 cells (Homo sapiens, sex: male, colon
epithelial) obtained from the ATCC (HTB-37) and Huh-7.5 hepatoma
cells (H. sapiens; sex: male, liver epithelial)* were cultured in Dulbecco’s
modified Eagle medium supplemented with 1% nonessential amino
acidsand 10% fetal bovine serum (FBS) at 37 °C and 5% CO,. All cell lines
were tested negative for contamination with mycoplasma.

Virus propagation and titration

The SARS-CoV-2 MA10 was provided by Ralph Baric (University of
North Carolina at Chapel Hill). A P1 stock was amplified in VeroE6
cells obtained from the ATCC that were engineered to stably express
TMPRSS2 (VeroE6-TMPRSS2). To generate a P2 working stock,
VeroE6-TMPRSS2 cells were infected at amultiplicity of infection (MOI)
of 0.1 plaque-forming units (PFUs) per cell and incubated at 37 °C for
4 days. Thevirus-containing supernatant was subsequently collected,
clarified by centrifugation (3,000g for 10 min) and filtered using a dis-
posable vacuum filter system with a 0.22-um membrane. Virus stock
titres were measured by a standard plaque assay on Huh-7.5 cells that
stably express ACE2 and TMPRSS2 (Huh-7.5-ACE2/TMPRSS2) and on
VeroE6 cells obtained from Ralph Baric (referred to as VeroE6-UNC).
Inbrief, 500 plof serial tenfold virus dilutions in Opti-MEM were used
toinfect4 x 10° cells seeded the day before into wells of a 6-well plate.
After 90 min of adsorption, the virusinoculum was removed, and cells
were overlaid with Dulbecco’s modified Eagle medium containing 10%
FBS with 1.2% microcrystalline cellulose (Avicel). Cells were incubated
for 4 days at 33 °C, followed by fixation with 7% formaldehyde and
crystal violet staining for plaque enumeration. SARS-CoV-2, strain
USA-WA1/2020, was obtained from BEI Resources and amplified in
Caco-2 cells. Caco-2 cells were infected at a MOI = 0.05 PFU per cell
and incubated for 6 days at 37 °C. The virus-containing supernatant
was subsequently collected, clarified by centrifugation (3,000g for
10 min) and stored at —80 °C. Viral titres were measured on Huh-7.5
cellsby standard plaque assay as described above. AlISARS-CoV-2and
SARS-CoV-2 MA10 experiments were performed in a biosafety level 3
(BSL-3) laboratory.

To confirmvirusidentity and evaluate for unwanted mutations that
were acquired during the amplification process, RNA from virus stocks
was purified using TRIzol reagent (Thermo Fisher, number 15596026).
Inbrief,200 pl of each virus stock was added to 800 pl TRIzol reagent,
followed by 200 pl chloroform, which was then centrifuged at12,000g
for 5 min. The upper aqueous phase was transferred to a new tube,
mixed withan equal volume of isopropanol, and then added to RNeasy
MiniKit columns (Qiagen, number 74014) to be further purified follow-
ing the manufacturer’s instructions. Viral stocks were subsequently
confirmed through next-generation sequencing using libraries for
lllumina MiSeq.

Animalstudies

Allanimal experiments were conducted inaccordance witha protocol
approved by the Institutional Animal Care and Use Committee at The
Rockefeller University, including the use of SARS-CoV-2 MA10 virus
under BSL-3 conditions. Human APOE2 (strain no. 1547), APOE3 (no.
1548) and APOE4 (no. 1549) targeted replacement (knock-in) mice on
C57BI/6 background were obtained from Taconic Biosciences.

SARS-CoV-2MA10Qinvivoinfections

Allinfection experiments were performed in a dedicated BSL-3 facil-
ity at The Rockefeller University at negative pressure. Staff perform-
ing experiments were protected by wearing Tyvek suits connected to
powered air-purifying respirators. Mice were intranasally infected with

14,700 PFU (based on titration in VeroE6-UNC cells) of SARS-CoV-2
MA10inavolume of 30 plunder anaesthesiawithacombination of keta-
mine and xylazine. APOE-knock-in mice were infected between 7 and
45weeks of age asindicated in the figures. Experimental cohorts were
age matched. Mice were monitored daily for weight loss and general
condition. Mice were recorded as dead when found dead in the cage or
when meeting criteriafor euthanasia as defined in the animal protocol,
including when falling below 70% initial body weight. All infected mice
wereincludedinsurvivaland weight analyses. Some mice were selected
before infection for tissue collection on the days as indicated in the
figure legends and censored for survival and weight analyses on the
respective days. Mice were gently twirled before weighing to prevent
measurement inaccuracies due to mouse movements. In addition,
weight measurements were performed with investigators blinded for
the genotype in two independent experiments that recapitulated the
results of the overall large cohort.

RNA isolation from homogenized lungs

Therightlunglobe was resected and homogenized in TRIzol (Thermo
Fisher, number 15596026) in a gentleMACS dissociator (Miltenyi)
according to the manufacturer’s instructions (program RNA_01).
Debris was removed by centrifugation (2,000g for 1 min), and RNA
wasisolated using the Direct-zol RNA purification kit (Zymo Research,
no.R2050) including DNAse digestion according to the manufacturer’s
instructions.

TagMan quantitative real-time PCR

For quantification of SARS-CoV-2 MA10 titres from homogenized
lungs, RNA was isolated as described above, reverse-transcribed and
quantified using the TagMan Fast Virus One Step Master Mix (Thermo
Fisher, number 4444436) on a QuantStudio 5 system running Quant-
Studio Design and Analysis v1.4.3 (Thermo Fisher) according to the
manufacturer’s instructions. Primers for viral nucleocapsid were as
recommended in the US Centers for Disease Control and Prevention
diagnostic N1assay (IDT, number 10006713), and 18S rRNA was used
as housekeeping control (Thermo Fisher, number 4319413E).

Bulk RNA sequencing

For preparation of RNA-sequencing libraries, 250-500 ng of RNA iso-
lated from homogenized lungs as outlined above was used as input for
the Quantseq3’FWD library preparation kit (Lexogen, number 015). For
cohorts1and 2, age-matched 17-23-week-old male mice were used. For
cohort 3, 7-week-old female mice were used. Libraries were sequenced
on an lllumina NovaSeq sequencer (single end, 100-base-pair read
length), and polyA and adapter sequences were trimmed using the
BBDuk utility (v38.9; options k =13, ktrim =r, forcetrimleft =11, use-
shortkmers =t, mink =35, qtrim =t, trimq =10, minlength = 20). As
genomereferences, mouse (assembly GRCm38) and SARS-CoV-2 MA10
(Genbank accession number MT952602; ref. °) genomes were concat-
enated, and trimmed reads were aligned using STAR aligner (v2.7.8a)
with default settings, apart from --outFilterMismatchNoverLmax 0.1,
as recommended by Lexogen (personal communication). STAR was
also used for counting reads mapping to genes. Further analysis was
performed usingR (v4.1.0). Two samples (out of 88 samples total) were
removed from analysis because of their identification as outliers on
the basis of principal component analysis and/or SARS-CoV-2 MA10
transcript abundance.

Weighted gene coexpression network analysis and pathway
analysis

Weighted gene coexpression network analysis** was carried out using
the WGCNAR package (v1.70) toidentify modules of coexpressed genes.
Weighted gene coexpression network analysis identifies clusters of
genes whose expression correlates with each other and relates these
clusters to traits, such as APOE genotype and time point relative to


https://www.ncbi.nlm.nih.gov/gquery/?term=MT952602

infectionin our study. The module eigengene represents the first princi-
pal component of the expression matrix and can be used to summarize
the (weighted average) expression of amodule. Gene expression data
were subjected to library size normalization and variance-stabilizing
transformation using DESeq2 (v1.32.0), and the top 30% genesin terms
of variance of expression were used as input for WGCNA. To compute
the adjacency matrix for asigned coexpression network, asoft thresh-
old power of 10 was used. To calculate correlations between traits and
module eigengenes, APOE genotype was assigned values based on
itsimpact on survival as shown in Fig. 1a, and the time point trait was
assigned values in terms of days relative to infection. Hub genes were
identified as the genes exhibiting the highest connectivity within a
given model.

Toassess enrichment of gene setslisted in the Gene Ontology biologi-
cal processes, the clusterProfiler package for R (v4.0.0) was used to per-
form overrepresentation analysis based on a hypergeometric model.

Single-cell RNA sequencing

For single-cell RNA sequencing of lung-resident cells, mice were anaes-
thetized, and the pulmonary circulation was flushed with 5-10 ml
ice-cold phosphate-buffered saline (PBS). The right lung lobe was dis-
sociated using the lung dissociationkit (130-095-927, Miltenyi Biotec)
withagentleMACS dissociator according to the manufacturer’sinstruc-
tions (program 37C_m_LDK_1). Cells were strained using a 70-um filter,
washed and pelleted, and red blood cells were lysed by incubation in
ACK buffer (A10492, Gibco) for 2 min before neutralization with PBS.
Cells were thenstrained again witha40-pum filter and processed using
the cell fixation (SB1001) and single-cell whole-transcriptome (SB2001)
kits from Parse Biosciences according to the manufacturer’s instruc-
tions. This single-cell RNA-sequencing approach is based on combi-
natorial barcoding, which enabled us to multiplex lungs from a total
of 29 mice representing each of the 3 APOE genotypes and conditions
inthe absence and presence of SARS-CoV-2 MA10 infection (Extended
Data Fig. 5a). One of the eight resulting sublibraries was sequenced
on an lllumina Nextseq 500 sequencer, and the other seven subli-
braries were pooled and sequenced on anIllumina Novaseq sequencer
(S2 flowcell) to an average depth of 65,256 reads per cell.

For data processing, the ParseBioscience processing pipeline
(v0.9.6p) was used with default settings to align sequencing reads
to the GRCm38 mouse genome and to demultiplex samples. In brief,
each ofthe eight sublibraries was first processed individually using the
command split-pipe -modeall, and the output of the eight sublibraries
was combined using split-pipe -mode combine. Downstream process-
ing was performed using the R package Seurat (v4.0.2) at default set-
tings unless otherwise noted. Cells with fewer than 150 or more than
7,500 detected unique genes, more than 40,000 unique molecular
identifiers, or more than15% mitochondrial reads were excluded from
analysis. The resulting gene-cell matrix was normalized and scaled
using Seurat’s NormalizeData and ScaleData functions and principal
component analysis was performed with Seurat’s RunPCA function;
cellswere clustered using the FindNeighbors (30 dimensions of reduc-
tion) and FindClusters (resolution =1.4) functions; for visualizing
clusters, RunUMAP (30 dimensions) was run. Wilcoxon rank-sum tests
were performed to determine differentially expressed genes between
clusters using the FindAlIMarkers function (minimal fraction of 25%
and log-transformed fold-change threshold of 0.25). The identity of
cell clusters was determined by cross-referencing top differentially
expressed transcripts with previous studies reporting on single-cell
transcriptomes of the lung***¢. Ambiguous cells with expression of
distinct lineage markers were deemed to be likely multiplets and were
excluded. Three clusters expressing T cell markers were character-
ized further using Seurat’s subset function and reanalysed similarly
to the main dataset, including running the RunPCA, FindNeighbors
(20 dimensions), FindClusters (resolution = 0.5) and RunUMAP func-
tions. Ambiguous cells from the subset were removed, and annotations

for the remaining clusters were added to the main dataset. For summary
analyses, clusters were grouped as follows: alveolar macrophages
A and B and proliferating alveolar macrophages as alveolar mac-
rophages; monocytes Aand B as monocytes; T cells naive, T cellsand
T cells proliferating as T cells; myofibroblasts, lipofibroblasts and
Col14al-expressing fibroblasts as fibroblasts; capillary endothelial
cells, vascular endothelial cells A and B, other endothelial cells, and
VcamI-expressing endothelial cells A and B as endothelial cells; alveo-
lartype1, alveolar type 2, ciliated cells, airway epithelial Aand B, and
mesothelial cells as epithelial cells. In total, filtering low-quality and
ambiguous cells resulted in 41,500 cells for analysis (of 50,104 cells
before filtering).

For gene set enrichment analysis of the samples frominfected mice,
differentially expressed genes between either APOE2 and APOE3 or
APOE4 and APOE3 were identified according to Wilcoxon rank-sum
tests using Seurat’s FindMarkers function. Genes were ranked using the
metric (-log,o[P value])/(sign of log,[fold change]). The ranked gene
lists were used as input for the GSEA function of the clusterProfiler R
package (v4.0.0) to assess enrichment of selected immune-related
pathways of the Hallmark gene set of the MSigDB database (http://
www.gsea-msigdb.org).

Histological analysis and immunofluorescence staining

Theleftlunglobe was resected and fixed by submersion in 4% paraform-
aldehyde for 24 h at room temperature. Fixed lungs were embedded
in paraffin and sectioned in 5-pm-thick slices. Sections were dewaxed
and rehydrated by incubation with xylene and descending ethanol
concentrations and then either stained with haematoxylin-eosin for
histological analysis or processed for immunofluorescence staining.

For immunofluorescence staining, samples were permeabilized
with 0.1% Triton X-100 for 15 min. Antigen retrieval was performed by
microwaving samples in Tris-EDTA buffer (Abcam, number ab93684)
for 20 min. Samples were blocked by incubation with 5% goat serum
in PBS with 0.1% Tween-20 (PBST) for 1 h. Subsequently, sections were
stained with anti-CD45 (polyclonal, Abcam, number ab10558;1:750) or
anti-SARS nucleocapsid (polyclonal, Novus Biologicals, number 56576,
1:1,000) at 4 °C overnight. All antibodies were diluted in PBST with
5% goat serum. Slides were washed three times with PBS and stained
with AF555-conjugated anti-rabbit antibody (1:200 in PBST, Thermo
Fisher) for 45 min. Slides were washed with PBS and nuclei were coun-
terstained with DAPI (1 pg ml™, Roche) before mounting with Prolong
Gold (Thermo Fisher). Images of lung sections were acquired using a
Nikon AIR confocal microscope at 20x magnification using Nikon NIS
elements software (v5.20.02). Images were quantified using CellProfiler
(v4.2.1). Three to four randomly sampled fields of view per lung were
analysed and averaged.

For histological analysis, haematoxylin-eosin-stained lung sections
were evaluated and scored by a board-certified veterinary patholo-
gist (S.E.C.) using asemiquantitative histopathology scoring system
used in mouse models of SARS-CoV-2 (refs. “*%). In brief, five random
fields of the lung lobe at 200x total magnification were chosen and
scored in a blinded manner for histopathological changes. Ordinal
scores for lesion parameters were assigned using the following tiers:
0, within expected limits; 1, uncommon, <5%; 2, detectable in 5-33%;
3, detectable in 34-66%; and 4, detectable in >66% of lung fields.
Tissues were graded for the presence of edema, haemorrhage, fibrin
and/or necrotic debris in alveoli, bronchiolar epithelial necrosis,
perivascular and interstitial inflammation and mononuclear cell infil-
trates. Endothelial inflammation (endothelialitis) was evaluated by
the extent of the lesion using the following ordinal scoring: 0, absent;
1, minor, solitary to loose adhesion or aggregation of leukocytes to
the vascular endothelium with or without infiltration of leukocytes
in the vascular wall (up to five blood vessels affected); 2, moderate,
small to medium adhesion/aggregates and infiltration (six to ten
blood vessels affected); and 3, severe, robust leukocytic aggregates
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andinfiltrates around pulmonary vessels (more than ten blood vessels
affected). Neutrophil cell infiltration (200-600x% objective magni-
fication) was scored as follows: O, within normal limits; 1, scattered
neutrophils sequestered insepta and/or infiltrating blood vessels; 2,
no.1plussolitary neutrophils extravasated in alveolar spaces; 3, no. 2
plus small aggregates in blood vessels, alveolar spaces, and perivas-
cularand peribronchiolar interstitium. An Olympus BX45 light micro-
scope was used to capture images with a DP26 camera using cellSens
Dimension software (v1.16). Lungs in SARS-CoV-2 MA10-infected mice
exhibited multifocal areas of airway epithelial damage in bronchi-
oles. Bronchioles had focal to multifocal changes characterized by
segmental attenuation of bronchiolar epithelium with anaccumula-
tion of necrotic cellular debris, fibrin and sloughed epithelial cells,
and occasional foamy macrophages in the airway lumina (Fig. 2f).
Peribronchiolar interstitium was multifocally infiltrated by increased
numbers of neutrophils and lymphocytes. The adjacent alveolar sacs
and septae exhibited multifocal to coalescing areas of alveolar dam-
age. Histological changes included hypercellular thickening of the
alveolar septae caused by infiltrating leukocytes and congestion of
alveolar capillaries, pneumocyte degeneration and necrosis, edema,
fibrin strands and increased numbers of macrophages and scattered
neutrophils and lymphocytesin alveolar spaces. Often, the vascular
endothelium of pulmonary vessels was reactive with adherence and
aggregation of leukocytes to the endothelium and transmigrating
within vessel walls, indicative of endothelialitis.

Flow cytometry

Allsteps were performed onice and under protection fromlight unless
stated otherwise. Peripheral blood was obtained by submandibular
bleedings, and red blood cells were lysed by incubation in ACK buffer
(A10492, Gibco) for 3 min at room temperature before addition of
PBS for neutralization. For flow cytometry of dissociated lungs, mice
were anaesthetized, and the pulmonary circulation was flushed with
5-10 mlice-cold PBS. Therightlunglobe was then dissociated using
the lung dissociation kit (130-095-927, Miltenyi Biotec) with a gen-
tleMACS dissociator according to the manufacturer’s instructions
(program 37C_m_LDK_1). Cells were strained through a 70-um filter,
washed and pelleted, and red blood cells were lysed by incubation
in ACK buffer asindicated above before addition of PBS for neutrali-
zation. Cells were pelleted by centrifugation at 200g for 5 min and
resuspended in staining buffer (25 mM HEPES, 2% FBS, 10 mM EDTA
(351-027, Quality Biological) and 0.1% sodium azide (7144.8-16, Ricca)
in PBS). To block Fc receptors, cells were incubated with 2.5 pg ml™
anti-CD16/32 antibody in staining buffer (clone 93; 101320, BioLeg-
end) before incubation with antibodies diluted in staining buffer for
20 min. After washing with PBS, cells were incubated with Zombie
NIR Fixable Live/Dead stain (423105, BioLegend; 1:10,000 in PBS) for
15 min atroom temperature, washed with staining buffer and fixed in
4% PFA. CountBright counting beads (C36950, Thermo Fisher) were
added to the peripheral blood samples before analysis on an LSR
Fortessa (BD Biosciences). For compensation, single-colour controls
with UltraComp beads (01-2222-42, Thermo Fisher) for antibodies and
amine-reactive beads (A10628, Thermo Fisher) for Zombie live-dead
stain were used. The following anti-mouse fluorophore-conjugated
antibodies were used: CD45-BV785 (clone 30-F11, catalogue number
103149, BioLegend, dilution: 1:3,000), CD11b-FITC (M1/70, 101206,
BioLegend, 1:1,000), Ly6G-PerCP/Cy5.5 (1A8, 127616, Biolegend,
1:1,000), Ly6C-BV711 (HK1.4,128037, BioLegend, 1:10,000), I-A/I-E-PE
(M5/114.15.2,107607, BioLegend, 1:10,000), CD19-PB (6D5, 115526,
Biolegend, 1:500), CD19-BV421 (6D5, 115549, BioLegend, 1:500),
NK1.1-APC (PK136, 17-5941-82, eBiosciences, 1:500), CD4-BV605
(GK1.5,100451, BioLegend, 1:300), CD8x-AF700 (53-6.7,100730,
BioLegend, 1:1,000). For staining of SARS-CoV-2 spike-specific CD8*
Tcells, BV421-labelled SARS-CoV-2 S 539-546 tetramer was used (NIH
Tetramer Core Facility, 1:200).

SARS-CoV-2invitroinfections

The day before infection, Huh-7.5 cells were seeded into 96-well plates
atadensity of 7.5 x 10° cells per well. The next day, recombinant APOE2,
APOE3, APOE4 (21-9195, 21-9189, 21-9190; Tonbo Biosciences) or BSA
(A9576, Sigma) as control was added to the wells at a concentration
of 10 pug ml™, followed by infection with SARS-CoV-2 (WA1/2020) at
an MOI of 0.01 PFU per cell. Cells were then incubated at 33 °C for
48 h. Next, they were fixed by adding an equal volume of 7% formal-
dehyde to the wells and subsequently permeabilized with 0.1% Triton
X-100 for 10 min. After extensive washing, SARS-CoV-2-infected cells
were incubated for 1 h at room temperature with blocking solution
of 5% goat serum in PBS (005-000-121, Jackson ImmunoResearch).
Arabbit polyclonal anti-SARS-CoV-2 nucleocapsid antibody (GTX135357,
GeneTex) was added to the cells at 1:1,000 dilution in blocking solu-
tion and incubated at 4 °C overnight. A goat anti-rabbit AlexaFluor
594 (A-11012, Life Technologies) was used as a secondary antibody at
a1:2,000 dilution. Nuclei were stained with Hoechst 33342 (62249,
Thermo Fisher) at a1 pg ml™ dilution. Images were acquired with a
fluorescence microscope and analysed using ImageXpress Micro XLS
(Molecular Devices). All SARS-CoV-2 experiments were carried out in
aBSL-3laboratory.

Analysis of the UK Biobank

APOE genotyping results as determined by the rs7412 and rs429358
single nucleotide polymorphisms were downloaded from the UK
Biobank*. Clinical data, including SARS-CoV-2 test results and survival
data, weredownloaded fromthe UK Biobank data portal on 22 June 2021.
For survival analyses, in patients with multiple tests the earliest positive
test result was used as day zero of infection and COVID-19-associated
death was recorded if the death cause was ICD10-coded as UO7.1 or
U07.2. Out of 502,619 patients, APOE genotype could be determined
in 413,219 patients. A total of 77,221 participants had SARS-CoV-2 test
results available, and 16,562 patients of these were tested positive at
least once (Extended DataFig.7a). APOE2/APOE4 heterozygous patients
(n=10,456) were excluded from analyses except for summary statistics
shown in Extended Data Fig. 7a. For visualization purposes, survival
data were truncated at 40 days. To account for genetic ancestry, the
first ten genetic principal components as provided by the UK Biobank
were included in a multivariate analysis. To restrict the analyses to
individuals of European genetic ancestry, field 22006 provided by
UK Biobank was used.

Statistical analysis

R v4.1.0 was used for data visualization and analyses. Statistical tests
and sample sizes are listed in the respective figure legends. Unless
otherwise noted, data are expressed as mean + standard error of the
mean. For boxplots, hinges represent the first and third quartiles,
whiskers extend to the smallest and largest value within 1.5 times the
interquartile ranges of the hinges, and points represent individual
mice. Survival analyses were performed using the R packages survival
and survminer; summary tables were compiled using the gtsummary
package. Multivariate analyses were performed according to a Cox
proportional hazards model using the survival package and visualized
withthe forestmodel package. A significant difference was concluded
atP<0.05inall figures.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Bulk RNA-sequencing and single-cell RNA-sequencing data have been
deposited at the Gene Expression Omnibus under accession numbers


https://www.ncbi.nlm.nih.gov/snp/?term=rs7412
https://www.ncbi.nlm.nih.gov/snp/?term=rs429358

GSE184289 and GSE199498, respectively. All data from the UK Biobank
is publicly available at https://www.ukbiobank.ac.uk. MSigDBis publicly
available at http://www.gsea-msigdb.org. Source data are provided
with this paper.
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Extended DataFig.1|Expanded characteristics of APOE knock-in mice
infected with SARS-CoV-2MA10. a-c, Distribution of age at infection (a), sex
(b), and APOE genotype (c) of APOE knock-in mice infected with SARS-CoV-2
MAI10 (n=328; datapooled from13independent experiments).d, Individual
weight course of male and female APOE knock-in mice infected with
SARS-CoV-2MAI1O from (a). e-f, Multivariate analysis of theimpact of age, sex,
APOE genotype, and the interaction of age/APOE and sex/APOE on survival of
SARS-CoV-2MA10-infected APOE knock-in mice from (a) (P values according to
multivariable Cox proportional hazards model; error barsin (f) denote 95%
confidenceintervals;n=128,82,and 118 for APOE2,APOE3,and APOE4,

90

80

70 -

APOE2 APOE3 APOE4
Males
110 110
100 " 100
920 p 90
80 ! 80
70 . 70
0 5 10 0 5 10

0 5 10 0 5 10 0 5 10
Day
g < 30 weeks old h > 30 weeks old
1.00 APOE3 1.00
£ £
5 075 APOE2 5 075 APOES
Qo o
[ [
8 050 T 8 0.50
E E APOE2
2 025 2 025
=1 =3
* p=0.00017 * p=024 APOE4
0.00 0.00
L B E— L B E—
0 5 10 0 5 10
Day Day
k APOE genotype
1.00 q =———————————+}
=
5 075
©
Qo
[}
8 050
H female =
N male =
2 0.25 -1 = APOE2
3 p= APOE3
0.00 — APOE4
L B E—
0 5 10

Day

respectively).g-h, Survival of young (<30 weeks old) (g) and old (> 30 weeks
old) (h) SARS-CoV-2 MA10-infected APOE-knock-in mice from (a) stratified by
APOE genotype; Pvaluesaccording to log-rank tests. i-k, Age (i), sex
distribution (j), and survival of non-infected APOE knock-in mice over a
two-week period (k) (n= 67,55, 67 for APOE2, APOE3, and APOE4, respectively;
Pvalues according to Kruskal-Wallis (i) and logrank (k) tests). Boxplot whiskers
in (a) extend to the smallest and largest value within 1.5 x interquartile ranges of
the hinges, and box centre and hingesindicate medianand first and third
quartiles, respectively.
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histopathologic analysis of lungs from SARS-CoV-2 MA10-infected APOE respectively). b-h, Histopathologic scoring of lungs from APOE knock-in mice
knock-inmice.a, TagMan qPCR for SARS-CoV-2Nlinhomogenized lungsfrom  onday4 postinfection with SARS-CoV-2 MA10 for hemorrhage (b), edema
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Extended DataFig. 4 |Immune cell profiling of lungs and peripheral blood
of APOE knock-in mice with COVID-19. a-b, Gating strategy to delineate
leukocyte subsets (a) and assessment of the proportion of leukocyte subsets
(b)indissociated lungs of APOE knock-in mice on day 4 post infection with
SARS-CoV-2MA10 (n=21,15,20 for APOE2, APOE3, and APOE4, respectively;
datapooled fromtwo independent experiments; P values according to one-
tailed t-tests). ¢, Gating strategy to delineate leukocyte subsets in peripheral
blood of APOE knock-in mice with COVID-19. d-g, Concentration of CD45"

leukocytes (d) and proportion of myeloid (e) and lymphoid (f) subsetsin the
peripheral blood of APOE knock-in mice on day 4 postinfection with SARS-
CoV-2MA10 as assessed by flow cytometry (n=10, 9, 7 for APOE2, APOE3, and
APOF4, respectively; Pvalues according to two-sided t tests). g, Representative
flow cytometry plots for (e-f). Boxplot whiskersinband d-fextend to the
smallest and largest value within 1.5 x interquartile ranges of the hinges, and
box centre and hingesindicate medianand first and third quartiles,

respectively.
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Software and code

Policy information about availability of computer code

Data collection  Nikon NIS elements v5.20.02, QuantStudio Design & Analysis (v1.4.3), FACSdiva v8 (BD Biosciences), cellSens Dimension software (v1.16).

Data analysis Weight and survival of mice were analyzed in RStudio v1.4 using R v4.1.0 and the R packages 'survival' (v3.2), 'survminer' (v0.4.9),
'forestmodel' (v0.6.2), ggpubr (v0.4.0), and 'tidyverse' (v1.3.1). qPCR data were analyzed in QuantStudio Design & Analysis (v1.4.3);
immunofluarescence images were acquired using Nikon NIS elements (v5.20.02) and analyzed using CellProfiler (v4.2.1). RNA-seq data were
analyzed using BBDuk (v38.9), STAR (v2.7.8a), R (v4.1.0), and DESeq?2 (v1.32.0). For weighted gene co-expression analysis the R package
WGCNA (v1.70) was used. scRNAseq data were analyzed using ParseBiosciences pipeline v0.9.6p and Seurat v4.0.2. GSEA was performed
using the clusterProfiler package (v4.0.0). Analysis of human data was performed using PLINK v1.9 and downstream analysis was performed
using the same tools as for mouse data described above. Summary tables were compiled using the R package 'gtsummary' (v1.4.1). Flow
cytometry data were analyzed using Flowjo v9.3.

Computer code: All custom code is publicly available at https://github.com/benostendorf/ostendorf etal 2022

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Bulk RNA-seq and scRNA-seq data have been deposited at the Gene Expression Omnibus (GEO) under accession numbers GSE184289 and GSE199498, respectively.
All data from the UK Biobank is publicly available under www.ukbiobank.ac.uk. MSigDB is publicly available under http://www.gsea-msigdb.org. Source data is
provided with this paper.
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Sample size No statistical methods were used to predetermine sample sizes. The number of samples per group was empirically chosen based on estimates
of intra-group variation (Leist et al., Cell, 2020) and expected effect size (Ostendorf et al., Nature Medicine, 2020).

Data exclusions  All mouse data were included in the manuscript. For bulk RNA-sequencing, two out of 88 samples were identified as outliers based on
principal component and sample distance analysis (large euclidean distance from all other samples of the same condition) and SARS-CoV-2
MAL0 transcript abundance (outlying low virus transcript detection) and excluded from analysis.

Replication Experiments were generally performed at least twice and pooled where appropriate as outlined in the individual figure legends.

Randomization  Samples were allocated randomly if possible (no infection versus infection groups). For experiments with genetically modified mice, allocation
was performed according to genotype and mice were sex- and age-matched. No other covariates systematically differed between groups.

Blinding Investigators were blinded for data collection and analysis of histology and immunofluorescence stainings. Two experiments on mouse

survival and mouse weight courses were performed with investigators blinded with regards to genotype, yielding comparable results to the
whole animal cohort. No blinding was performed for the remaining in-vivo experiments due to cage labeling requirements.
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Antibodies

Antibodies used IF stainings: CD45 (polyclonal, Abcam, #ab10558, 1:750), SARS nucleocapsid (polyclonal, Novus Biological, 56576, 1:1000), SARS-CoV2
nucleocapsid (polyclonal, GTX135357, 1:1000), goat anti-rabbit Alexa Fluor 555 (polyclonal, ThermoFisher Scientific, A-21428, 1:200).
Flow cytometry: CD45-BV785 (clone: 30-F11, cat#: 103149, supplier: BioLegend, dilution: 1:3,000), CD11b-FITC (M1/70, 101206,
Biolegend, 1:1,000), Ly6G-PerCP/Cy5.5 (1A8, 127616, Biolegend, 1:1,000), Ly6C-BV711 (HK1.4, 128037, BioLegend, 1:10,000), I-A/I-
E-PE (M5/114.15.2, 107607, BioLegend, 1:10,000), CD19-PB (6D5, 115526, Biolegend, 1:500), CD19-BV421 (6D5, 115549, BioLegend,
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1:500), NK1.1-APC (PK136, 17-5941-82, eBiosciences, 1:500), CD4-BV605 (GK1.5, 100451, BiolLegend, 1:300), CD8a-AF700 (53-6.7,
100730, BioLegend, 1:1,000), BV421-labeled SARS-CoV-2 S 539-546 tetramer (NIH Tetramer Core Facility, 1:200).

Validation Validation data of the antibodies listed above was performed by the manufacturers and is available at each manufacturer's website
by searching under the provided catalog numbers. Antibodies for IF were validated by the manufacturers either by assessing cells
known to express or not to express the target protein and cross-referencing the expression pattern with the available literature or by
orthogonal validation using an antibody-independent strategy. Antibodies for flow cytometry were validated by specificity testing on
1-3 target cell types with either single- or multi-color analysis including positive and negative cell types. New lots were validated to
perform with similar intensity (MFI) as assessed on both positive and negative populations and each lot product was validated by QC
testing with a series of titration dilutions.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) VeroE6: ATCC (CRL-1586) and Ralph Baric (University of North Carolina at Chapel Hill); Huh-7.5: Charles Rice (Rockefeller
University; Blight et al, J Viirol, 2002, developed in the laboratory of Charles Rice); Caco-2: ATCC (HTB-37).
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Authentication No authentication was performed on the cell lines.
Mycoplasma contamination Mycoplasma contamination was ruled out in all cell lines.

Commonly misidentified lines  None.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Human APOE2, APOE3, and APOE4 mice were obtained from Taconic Biosciences. Both female and male mice were used between
7-46 weeks of age as indicated in the figures. Mice were housed in a controlled ambient temperature (20-252C) and humidity
(30-70%) environment with a 12 hour light-dark cycle.

Wild animals No wild animals were used in this study.

Field-collected samples  No field-collected samples were used in this study.

Ethics oversight All animal experiments were conducted in accordance with a protocol approved by the Instutional Animal Care and Use Committee
at The Rockefeller University.

Naote that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
@ The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

& The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).
& All plots are contour plots with outliers or pseudocolor plots.

& A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation PBMCs were obtained from mice by submandibular bleedings and red blood cells were lysed in ACK buffer as outlined in the
methods section. Lungs were dissociated into single-cell suspensions using the lung dissociation kit and a gentleMACS
dissociator (Milteny biotec) as outlined in the methods section.

Instrument BD LSR Fortessa

Software BD DIVA software v8 was used for data collection and Flowjo software v9.3 was used for data analysis.

Cell population abundance No cell sorting was performed.

Gating strategy Gating strategies were followed as outlined in Extended Data Fig 4. In brief, an initial gate based on basal scatter

characteristics served to exclude debris followed by singlet gates based on FSC-H and SSC-H. Compensation was calculated
using single color controls using Ultracomp compensation beads (ThermaoFisher) for antibodies and amine-reactive beads for
Zombie (ThermoFisher).

& Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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